fork download
  1. class SalaryOptimizer:
  2. def __init__(self, market_data, employee_perf):
  3. self.q_table = np.zeros([len(market_data), len(employee_perf)])
  4. self.alpha = 0.1
  5. self.gamma = 0.6
  6.  
  7. def update_model(self, state, action, reward, next_state):
  8. old_value = self.q_table[state, action]
  9. next_max = np.max(self.q_table[next_state])
  10. new_value = (1 - self.alpha) * old_value + self.alpha * (reward + self.gamma * next_max)
  11. self.q_table[state, action] = new_value
  12.  
  13. def get_optimal_salary(self, current_state):
  14. return np.argmax(self.q_table[current_state])
Success #stdin #stdout 0.1s 14120KB
stdin
Standard input is empty
stdout
Standard output is empty