class SalaryOptimizer:
def __init__(self, market_data, employee_perf):
self.q_table = np.zeros([len(market_data), len(employee_perf)])
self.alpha = 0.1
self.gamma = 0.6
def update_model(self, state, action, reward, next_state):
old_value = self.q_table[state, action]
next_max = np.max(self.q_table[next_state])
new_value = (1 - self.alpha) * old_value + self.alpha * (reward + self.gamma * next_max)
self.q_table[state, action] = new_value
def get_optimal_salary(self, current_state):
return np.argmax(self.q_table[current_state])
Y2xhc3MgU2FsYXJ5T3B0aW1pemVyOgogICAgZGVmIF9faW5pdF9fKHNlbGYsIG1hcmtldF9kYXRhLCBlbXBsb3llZV9wZXJmKToKICAgICAgICBzZWxmLnFfdGFibGUgPSBucC56ZXJvcyhbbGVuKG1hcmtldF9kYXRhKSwgbGVuKGVtcGxveWVlX3BlcmYpXSkKICAgICAgICBzZWxmLmFscGhhID0gMC4xCiAgICAgICAgc2VsZi5nYW1tYSA9IDAuNgogICAgICAgIAogICAgZGVmIHVwZGF0ZV9tb2RlbChzZWxmLCBzdGF0ZSwgYWN0aW9uLCByZXdhcmQsIG5leHRfc3RhdGUpOgogICAgICAgIG9sZF92YWx1ZSA9IHNlbGYucV90YWJsZVtzdGF0ZSwgYWN0aW9uXQogICAgICAgIG5leHRfbWF4ID0gbnAubWF4KHNlbGYucV90YWJsZVtuZXh0X3N0YXRlXSkKICAgICAgICBuZXdfdmFsdWUgPSAoMSAtIHNlbGYuYWxwaGEpICogb2xkX3ZhbHVlICsgc2VsZi5hbHBoYSAqIChyZXdhcmQgKyBzZWxmLmdhbW1hICogbmV4dF9tYXgpCiAgICAgICAgc2VsZi5xX3RhYmxlW3N0YXRlLCBhY3Rpb25dID0gbmV3X3ZhbHVlCiAgICAgICAgCiAgICBkZWYgZ2V0X29wdGltYWxfc2FsYXJ5KHNlbGYsIGN1cnJlbnRfc3RhdGUpOgogICAgICAgIHJldHVybiBucC5hcmdtYXgoc2VsZi5xX3RhYmxlW2N1cnJlbnRfc3RhdGVdKQ==