import seaborn as sns
import matplotlib.pyplot as plt
# Updated marks data
marks = [65, 72, 78, 81, 69, 88, 74, 90, 82, 86, 79, 68, 85, 92, 77]
# Plotting the histogram with KDE
plt.figure(figsize=(8, 6))
sns.histplot(marks, kde=True, bins=10, color='blue', edgecolor='black')
plt.grid(True)
plt.title("Distribution of Marks")
plt.xlabel("Marks")
plt.ylabel("Frequency")
plt.show()
aW1wb3J0IHNlYWJvcm4gYXMgc25zCmltcG9ydCBtYXRwbG90bGliLnB5cGxvdCBhcyBwbHQKCiMgVXBkYXRlZCBtYXJrcyBkYXRhCm1hcmtzID0gWzY1LCA3MiwgNzgsIDgxLCA2OSwgODgsIDc0LCA5MCwgODIsIDg2LCA3OSwgNjgsIDg1LCA5MiwgNzddCgojIFBsb3R0aW5nIHRoZSBoaXN0b2dyYW0gd2l0aCBLREUKcGx0LmZpZ3VyZShmaWdzaXplPSg4LCA2KSkKc25zLmhpc3RwbG90KG1hcmtzLCBrZGU9VHJ1ZSwgYmlucz0xMCwgY29sb3I9J2JsdWUnLCBlZGdlY29sb3I9J2JsYWNrJykKcGx0LmdyaWQoVHJ1ZSkKcGx0LnRpdGxlKCJEaXN0cmlidXRpb24gb2YgTWFya3MiKQpwbHQueGxhYmVsKCJNYXJrcyIpCnBsdC55bGFiZWwoIkZyZXF1ZW5jeSIpCnBsdC5zaG93KCk=