#include <bits/stdc++.h>
using namespace std;
// We'll compute the cycle decomposition of the original permutation p (1-indexed)
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
int t;
cin >> t;
while(t--){
int n;
cin >> n;
vector<int> p(n+1);
for (int i = 1; i <= n; i++){
cin >> p[i];
}
vector<int> d(n+1);
for (int i = 1; i <= n; i++){
cin >> d[i];
}
// --- Step 1. Compute cycle decomposition of p.
// cycleId[i] = the id (1-indexed) of the cycle to which index i belongs.
// cycleSize[id-1] will store the size of that cycle.
vector<int> cycleId(n+1, 0);
vector<int> cycleSize;
int cid = 0;
vector<bool> visited(n+1, false);
for (int i = 1; i <= n; i++){
if(!visited[i]){
cid++;
int cur = i;
int cnt = 0;
while(!visited[cur]){
visited[cur] = true;
cycleId[cur] = cid;
cnt++;
cur = p[cur];
}
cycleSize.push_back(cnt);
}
}
// --- Step 2. Reverse simulation.
// In the forward process we “remove” entries one by one.
// In the reverse process we start with an all-zero array and “restore” entries in the reverse order.
// In the final fixed array (the original permutation) the cost (i.e. minimal operations needed)
// is 0. In the reverse simulation, if we have restored k indices then:
// cost = (n - k) + (for each cycle C: if (restored in C) < |C| then (restored in C) else 0).
//
// Let F[k] be the cost when exactly k indices are restored.
vector<long long> F(n+1, 0);
int activeCount = 0; // number of restored indices
long long currCost = n; // initially, no index is restored so cost = n (all indices missing)
F[0] = currCost;
// For each cycle (by id) we track how many indices have been restored.
vector<int> cntCycle(cid+1, 0);
// Process “adding back” indices in the reverse order of removals.
// d[1..n] gives the removal order; so we add in reverse: d[n], d[n-1], ..., d[1].
for (int i = 1; i <= n; i++){
int pos = d[n - i + 1]; // index we are restoring
activeCount++;
int cyc = cycleId[pos];
// In cycle cyc, let old = (number restored before) and new = old+1.
int oldCount = cntCycle[cyc];
int newCount = oldCount + 1;
// When we add one element:
// (i) the missing count (n - activeCount) decreases by 1,
// (ii) and the contribution for cycle cyc changes from:
// prev = (oldCount if oldCount < cycleSize else 0)
// to new = (newCount if newCount < cycleSize else 0).
currCost -= 1; // decrease in missing count
int cycleTotal = cycleSize[cyc - 1];
int prevContribution = (oldCount < cycleTotal ? oldCount : 0);
int newContribution = (newCount < cycleTotal ? newCount : 0);
currCost += (newContribution - prevContribution);
cntCycle[cyc] = newCount;
F[activeCount] = currCost;
}
// --- Step 3. Answering queries.
// In the reverse simulation, F[k] is the answer (minimal operations needed)
// when k indices are restored. But note that if k indices are restored,
// then (n-k) indices were removed in the forward process.
// So for query i (i from 1 to n: i removals) the answer equals F[n-i].
vector<long long> ans(n+1, 0);
for (int i = 1; i <= n; i++){
int ac = n - i; // number of restored indices in the corresponding reverse state
ans[i] = F[ac];
}
// Output the answer for the current test case.
// (We output n numbers: the i-th is the answer after i removals.)
for (int i = 1; i <= n; i++){
cout << ans[i] << (i==n ? "\n" : " ");
}
}
return 0;
}