/*
You are given a large integer represented as an integer array digits, where each digits[i] is the ith digit of the integer. The digits are ordered from most significant to least significant in left-to-right order. The large integer does not contain any leading 0's.
Increment the large integer by one and return the resulting array of digits.
Example 1:
Input: digits = [1,2,3]
Output: [1,2,4]
Explanation: The array represents the integer 123.
Incrementing by one gives 123 + 1 = 124.
Thus, the result should be [1,2,4].
Example 2:
Input: digits = [4,3,2,1]
Output: [4,3,2,2]
Explanation: The array represents the integer 4321.
Incrementing by one gives 4321 + 1 = 4322.
Thus, the result should be [4,3,2,2].
Example 3:
Input: digits = [9]
Output: [1,0]
Explanation: The array represents the integer 9.
Incrementing by one gives 9 + 1 = 10.
Thus, the result should be [1,0].
Constraints:
1. 1 <= digits.length <= 100
2. 0 <= digits[i] <= 9
3. digits does not contain any leading 0's.
*/
function increareArrayDigitByOne( arr) {
let remainder= 1 ;
for ( let a= arr.length - 1 ; a>= 0 ; a-- ) {
let digitWithRemainder= arr[ a] + remainder;
if ( digitWithRemainder=== 10 && a!== 0 ) {
arr[ a] = 0 ;
remainder= 1 ;
} else if ( digitWithRemainder=== 10 && a=== 0 ) {
arr[ a] = 1 ;
arr.push ( 0 ) ;
} else {
arr[ a] = digitWithRemainder;
remainder= 0 ;
return ;
}
}
console.log ( arr) ;
return arr;
}
increareArrayDigitByOne( [ 9 , 9 , 9 ] )
LyoKWW91IGFyZSBnaXZlbiBhIGxhcmdlIGludGVnZXIgcmVwcmVzZW50ZWQgYXMgYW4gaW50ZWdlciBhcnJheSBkaWdpdHMsIHdoZXJlIGVhY2ggZGlnaXRzW2ldIGlzIHRoZSBpdGggZGlnaXQgb2YgdGhlIGludGVnZXIuIFRoZSBkaWdpdHMgYXJlIG9yZGVyZWQgZnJvbSBtb3N0IHNpZ25pZmljYW50IHRvIGxlYXN0IHNpZ25pZmljYW50IGluIGxlZnQtdG8tcmlnaHQgb3JkZXIuIFRoZSBsYXJnZSBpbnRlZ2VyIGRvZXMgbm90IGNvbnRhaW4gYW55IGxlYWRpbmcgMCdzLgoKSW5jcmVtZW50IHRoZSBsYXJnZSBpbnRlZ2VyIGJ5IG9uZSBhbmQgcmV0dXJuIHRoZSByZXN1bHRpbmcgYXJyYXkgb2YgZGlnaXRzLgoKIAoKRXhhbXBsZSAxOgoKSW5wdXQ6IGRpZ2l0cyA9IFsxLDIsM10KT3V0cHV0OiBbMSwyLDRdCkV4cGxhbmF0aW9uOiBUaGUgYXJyYXkgcmVwcmVzZW50cyB0aGUgaW50ZWdlciAxMjMuCkluY3JlbWVudGluZyBieSBvbmUgZ2l2ZXMgMTIzICsgMSA9IDEyNC4KVGh1cywgdGhlIHJlc3VsdCBzaG91bGQgYmUgWzEsMiw0XS4KRXhhbXBsZSAyOgoKSW5wdXQ6IGRpZ2l0cyA9IFs0LDMsMiwxXQpPdXRwdXQ6IFs0LDMsMiwyXQpFeHBsYW5hdGlvbjogVGhlIGFycmF5IHJlcHJlc2VudHMgdGhlIGludGVnZXIgNDMyMS4KSW5jcmVtZW50aW5nIGJ5IG9uZSBnaXZlcyA0MzIxICsgMSA9IDQzMjIuClRodXMsIHRoZSByZXN1bHQgc2hvdWxkIGJlIFs0LDMsMiwyXS4KRXhhbXBsZSAzOgoKSW5wdXQ6IGRpZ2l0cyA9IFs5XQpPdXRwdXQ6IFsxLDBdCkV4cGxhbmF0aW9uOiBUaGUgYXJyYXkgcmVwcmVzZW50cyB0aGUgaW50ZWdlciA5LgpJbmNyZW1lbnRpbmcgYnkgb25lIGdpdmVzIDkgKyAxID0gMTAuClRodXMsIHRoZSByZXN1bHQgc2hvdWxkIGJlIFsxLDBdLgogCgpDb25zdHJhaW50czoKCjEuIDEgPD0gZGlnaXRzLmxlbmd0aCA8PSAxMDAKMi4gMCA8PSBkaWdpdHNbaV0gPD0gOQozLiBkaWdpdHMgZG9lcyBub3QgY29udGFpbiBhbnkgbGVhZGluZyAwJ3MuCgoqLwoKCgpmdW5jdGlvbiBpbmNyZWFyZUFycmF5RGlnaXRCeU9uZShhcnIpewoKbGV0IHJlbWFpbmRlcj0xOwoKZm9yKGxldCBhPWFyci5sZW5ndGgtMTthPj0wO2EtLSl7CglsZXQgZGlnaXRXaXRoUmVtYWluZGVyPWFyclthXStyZW1haW5kZXI7CgoJaWYoZGlnaXRXaXRoUmVtYWluZGVyPT09MTAmJmEhPT0wKXsKCWFyclthXT0wOwogICAgcmVtYWluZGVyPTE7Cgl9ZWxzZSBpZihkaWdpdFdpdGhSZW1haW5kZXI9PT0xMCYmYT09PTApewoJCWFyclthXT0xOwoJICBhcnIucHVzaCgwKTsKCX1lbHNlewoJCWFyclthXT1kaWdpdFdpdGhSZW1haW5kZXI7CgkJcmVtYWluZGVyPTA7CgkJcmV0dXJuOwoJfQoJCn0KY29uc29sZS5sb2coYXJyKTsKCXJldHVybiBhcnI7Cgp9CgppbmNyZWFyZUFycmF5RGlnaXRCeU9uZShbOSw5LDldKQoK