import numpy as np
import matplotlib.pyplot as plt
# Constants
G = 1
M = 1
a = 1
# Radial coordinate
r = np.linspace(0, 2, 500)
# Potential inside the sphere (r <= a)
def potential_inside(r):
return -G * M * (3 * a**2 - r**2) / (2 * a**3)
# Potential outside the sphere (r > a)
def potential_outside(r):
return -G * M / r
# Calculate potentials
potential_in = potential_inside(r[r <= a])
potential_out = potential_outside(r[r > a])
# Plotting
plt.figure(figsize=(10, 6))
plt.plot(r[r <= a], potential_in, label='Внутренний потенциал')
plt.plot(r[r > a], potential_out, label='Внешний потенциал')
plt.axvline(x=a, color='k', linestyle='--', label='Радиус сферы (a)')
plt.xlabel
plt.ylabel
plt.title
plt.legend()
plt.grid(True)
plt.show()
aW1wb3J0IG51bXB5IGFzIG5wCgppbXBvcnQgbWF0cGxvdGxpYi5weXBsb3QgYXMgcGx0CgojIENvbnN0YW50cwpHID0gMQpNID0gMQphID0gMQoKIyBSYWRpYWwgY29vcmRpbmF0ZQpyID0gbnAubGluc3BhY2UoMCwgMiwgNTAwKQoKIyBQb3RlbnRpYWwgaW5zaWRlIHRoZSBzcGhlcmUgKHIgPD0gYSkKZGVmIHBvdGVudGlhbF9pbnNpZGUocik6CiAgICByZXR1cm4gLUcgKiBNICogKDMgKiBhKioyIC0gcioqMikgLyAoMiAqIGEqKjMpCgojIFBvdGVudGlhbCBvdXRzaWRlIHRoZSBzcGhlcmUgKHIgPiBhKQpkZWYgcG90ZW50aWFsX291dHNpZGUocik6CiAgICByZXR1cm4gLUcgKiBNIC8gcgoKIyBDYWxjdWxhdGUgcG90ZW50aWFscwpwb3RlbnRpYWxfaW4gPSBwb3RlbnRpYWxfaW5zaWRlKHJbciA8PSBhXSkKcG90ZW50aWFsX291dCA9IHBvdGVudGlhbF9vdXRzaWRlKHJbciA+IGFdKQoKIyBQbG90dGluZwpwbHQuZmlndXJlKGZpZ3NpemU9KDEwLCA2KSkKcGx0LnBsb3QocltyIDw9IGFdLCBwb3RlbnRpYWxfaW4sIGxhYmVsPSfQktC90YPRgtGA0LXQvdC90LjQuSDQv9C+0YLQtdC90YbQuNCw0LsnKQpwbHQucGxvdChyW3IgPiBhXSwgcG90ZW50aWFsX291dCwgbGFiZWw9J9CS0L3QtdGI0L3QuNC5INC/0L7RgtC10L3RhtC40LDQuycpCnBsdC5heHZsaW5lKHg9YSwgY29sb3I9J2snLCBsaW5lc3R5bGU9Jy0tJywgbGFiZWw9J9Cg0LDQtNC40YPRgSDRgdGE0LXRgNGLIChhKScpCnBsdC54bGFiZWwKcGx0LnlsYWJlbApwbHQudGl0bGUKcGx0LmxlZ2VuZCgpCnBsdC5ncmlkKFRydWUpCnBsdC5zaG93KCk=