from itertools import permutations, combinations
def max_abs_sum_gain(a1, b1, a2, b2):
orig = abs(a1 - b1) + abs(a2 - b2)
vals = [a1, b1, a2, b2]
max_new = 0
for a_group in combinations(range(4), 2):
b_group = [i for i in range(4) if i not in a_group]
for a_perm in permutations([vals[i] for i in a_group]):
for b_perm in permutations([vals[i] for i in b_group]):
new_v = abs(a_perm[0] - b_perm[0]) + abs(a_perm[1] - b_perm[1])
max_new = max(max_new, new_v)
return max_new - orig
def solve():
import sys
input = sys.stdin.read
data = input().split()
idx = 0
t = int(data[idx])
idx += 1
results = []
for _ in range(t):
n = int(data[idx])
idx += 1
k = int(data[idx])
idx += 1
a = list(map(int, data[idx:idx + n]))
idx += n
b = list(map(int, data[idx:idx + n]))
idx += n
initial_v = sum(abs(a[i] - b[i]) for i in range(n))
gains = []
for i in range(n):
for j in range(i + 1, n):
gain = max_abs_sum_gain(a[i], b[i], a[j], b[j])
if gain > 0:
gains.append(gain)
gains.sort(reverse=True)
final_v = initial_v - sum(gains[:k])
results.append(str(final_v))
print("\n".join(results))
solve()
ZnJvbSBpdGVydG9vbHMgaW1wb3J0IHBlcm11dGF0aW9ucywgY29tYmluYXRpb25zCgpkZWYgbWF4X2Fic19zdW1fZ2FpbihhMSwgYjEsIGEyLCBiMik6CiAgICBvcmlnID0gYWJzKGExIC0gYjEpICsgYWJzKGEyIC0gYjIpCiAgICB2YWxzID0gW2ExLCBiMSwgYTIsIGIyXQogICAgbWF4X25ldyA9IDAKICAgIGZvciBhX2dyb3VwIGluIGNvbWJpbmF0aW9ucyhyYW5nZSg0KSwgMik6CiAgICAgICAgYl9ncm91cCA9IFtpIGZvciBpIGluIHJhbmdlKDQpIGlmIGkgbm90IGluIGFfZ3JvdXBdCiAgICAgICAgZm9yIGFfcGVybSBpbiBwZXJtdXRhdGlvbnMoW3ZhbHNbaV0gZm9yIGkgaW4gYV9ncm91cF0pOgogICAgICAgICAgICBmb3IgYl9wZXJtIGluIHBlcm11dGF0aW9ucyhbdmFsc1tpXSBmb3IgaSBpbiBiX2dyb3VwXSk6CiAgICAgICAgICAgICAgICBuZXdfdiA9IGFicyhhX3Blcm1bMF0gLSBiX3Blcm1bMF0pICsgYWJzKGFfcGVybVsxXSAtIGJfcGVybVsxXSkKICAgICAgICAgICAgICAgIG1heF9uZXcgPSBtYXgobWF4X25ldywgbmV3X3YpCiAgICByZXR1cm4gbWF4X25ldyAtIG9yaWcKCmRlZiBzb2x2ZSgpOgogICAgaW1wb3J0IHN5cwogICAgaW5wdXQgPSBzeXMuc3RkaW4ucmVhZAogICAgZGF0YSA9IGlucHV0KCkuc3BsaXQoKQoKICAgIGlkeCA9IDAKICAgIHQgPSBpbnQoZGF0YVtpZHhdKQogICAgaWR4ICs9IDEKICAgIHJlc3VsdHMgPSBbXQogICAgZm9yIF8gaW4gcmFuZ2UodCk6CiAgICAgICAgbiA9IGludChkYXRhW2lkeF0pCiAgICAgICAgaWR4ICs9IDEKICAgICAgICBrID0gaW50KGRhdGFbaWR4XSkKICAgICAgICBpZHggKz0gMQogICAgICAgIGEgPSBsaXN0KG1hcChpbnQsIGRhdGFbaWR4OmlkeCArIG5dKSkKICAgICAgICBpZHggKz0gbgogICAgICAgIGIgPSBsaXN0KG1hcChpbnQsIGRhdGFbaWR4OmlkeCArIG5dKSkKICAgICAgICBpZHggKz0gbgoKICAgICAgICBpbml0aWFsX3YgPSBzdW0oYWJzKGFbaV0gLSBiW2ldKSBmb3IgaSBpbiByYW5nZShuKSkKICAgICAgICBnYWlucyA9IFtdCgogICAgICAgIGZvciBpIGluIHJhbmdlKG4pOgogICAgICAgICAgICBmb3IgaiBpbiByYW5nZShpICsgMSwgbik6CiAgICAgICAgICAgICAgICBnYWluID0gbWF4X2Fic19zdW1fZ2FpbihhW2ldLCBiW2ldLCBhW2pdLCBiW2pdKQogICAgICAgICAgICAgICAgaWYgZ2FpbiA+IDA6CiAgICAgICAgICAgICAgICAgICAgZ2FpbnMuYXBwZW5kKGdhaW4pCgogICAgICAgIGdhaW5zLnNvcnQocmV2ZXJzZT1UcnVlKQogICAgICAgIGZpbmFsX3YgPSBpbml0aWFsX3YgLSBzdW0oZ2FpbnNbOmtdKQogICAgICAgIHJlc3VsdHMuYXBwZW5kKHN0cihmaW5hbF92KSkKCiAgICBwcmludCgiXG4iLmpvaW4ocmVzdWx0cykpCgpzb2x2ZSgp
NQoyIDEKMSA3CjMgNQozIDIKMSA1IDMKNiAyIDQKNSA0CjEgMTYgMTAgMTAgMTYKMyAyIDIgMTUgMTUKNCAxCjIzIDEgMTggNAoxOSAyIDEwIDMKMTAgMTAKNCAzIDIgMTAwIDQgMSAyIDQgNSA1CjEgMjAwIDQgNSA2IDEgMTAgMiAzIDQK
5
2 1
1 7
3 5
3 2
1 5 3
6 2 4
5 4
1 16 10 10 16
3 2 2 15 15
4 1
23 1 18 4
19 2 10 3
10 10
4 3 2 100 4 1 2 4 5 5
1 200 4 5 6 1 10 2 3 4