#include<bits/stdc++.h>
using namespace std;
#define endl '\n'
#define int long long
const int MOD = 1000000007;
const int MOD2 = 998244353;
const int INF = LLONG_MAX / 2;
const int MAXN = 100000;
int primes[1000000];
void seive() {
fill(primes, primes + 1000000, 1);
primes[0] = primes[1] = 0;
for (int i = 2; i * i < 1000000; i++) {
if (primes[i]) {
for (int j = i * i; j < 1000000; j += i) {
primes[j] = 0;
}
}
}
}
bool isPrime(int n) {
if (n <= 1) return false;
for (int i = 2; i * i <= n; i++) {
if (n % i == 0) return false;
}
return true;
}
int gcd(int a, int b) {
if (a == 0) return b;
return gcd(b % a, a);
}
int power(int a, int b, int mod) {
int res = 1;
a %= mod;
while (b > 0) {
if (b & 1) res = res * a % mod;
a = a * a % mod;
b >>= 1;
}
return res;
}
// nCr % MOD for n < MOD
int nCrModP(int n, int r) {
if (r > n) return 0;
if (r == 0 || r == n) return 1;
int numerator = 1, denominator = 1;
for (int i = 0; i < r; i++) {
numerator = (numerator * (n - i)) % MOD;
denominator = (denominator * (i + 1)) % MOD;
}
return (numerator * power(denominator, MOD - 2, MOD)) % MOD;
}
// Lucas's Theorem
int lucas(int n, int r) {
if (r == 0) return 1;
return (lucas(n / MOD, r / MOD) * nCrModP(n % MOD, r % MOD)) % MOD;
}
void solve() {
int n,k;
cin>>n>>k;
int A[n];
for(int i = 0 ; i<n ; i++){
cin>>A[i];
}
int B[n];
int d = A[k-1];
for(int i = 0 ; i<n ; i++){
if(A[i]<d){
B[i] = -1;
}
if(A[i]==d){
B[i] = 0;
}
if(A[i]>d){
B[i] = 1;
}
}
unordered_map<int,int>even,odd;
int cnt = 0;
int sum = 0;
even[0] = 1;
for(int i = 0 ; i<n ; i++){
sum += B[i];
if(i%2!=0){
cnt += even[sum];
odd[sum]++;
}
else{
cnt += odd[sum];
even[sum]++;
}
}
cout<<cnt<<endl;
}
signed main() {
ios::sync_with_stdio(false); cin.tie(NULL);
//int t;
//cin >> t;
//while (t--) {
solve();
//}
return 0;
}
I2luY2x1ZGU8Yml0cy9zdGRjKysuaD4KdXNpbmcgbmFtZXNwYWNlIHN0ZDsKI2RlZmluZSBlbmRsICdcbicKI2RlZmluZSBpbnQgbG9uZyBsb25nCmNvbnN0IGludCBNT0QgPSAxMDAwMDAwMDA3Owpjb25zdCBpbnQgTU9EMiA9IDk5ODI0NDM1MzsKY29uc3QgaW50IElORiA9IExMT05HX01BWCAvIDI7CmNvbnN0IGludCBNQVhOID0gMTAwMDAwOwppbnQgcHJpbWVzWzEwMDAwMDBdOwoKdm9pZCBzZWl2ZSgpIHsKICAgIGZpbGwocHJpbWVzLCBwcmltZXMgKyAxMDAwMDAwLCAxKTsKICAgIHByaW1lc1swXSA9IHByaW1lc1sxXSA9IDA7CiAgICBmb3IgKGludCBpID0gMjsgaSAqIGkgPCAxMDAwMDAwOyBpKyspIHsKICAgICAgICBpZiAocHJpbWVzW2ldKSB7CiAgICAgICAgICAgIGZvciAoaW50IGogPSBpICogaTsgaiA8IDEwMDAwMDA7IGogKz0gaSkgewogICAgICAgICAgICAgICAgcHJpbWVzW2pdID0gMDsKICAgICAgICAgICAgfQogICAgICAgIH0KICAgIH0KfQoKYm9vbCBpc1ByaW1lKGludCBuKSB7CiAgICBpZiAobiA8PSAxKSByZXR1cm4gZmFsc2U7CiAgICBmb3IgKGludCBpID0gMjsgaSAqIGkgPD0gbjsgaSsrKSB7CiAgICAgICAgaWYgKG4gJSBpID09IDApIHJldHVybiBmYWxzZTsKICAgIH0KICAgIHJldHVybiB0cnVlOwp9CgppbnQgZ2NkKGludCBhLCBpbnQgYikgewogICAgaWYgKGEgPT0gMCkgcmV0dXJuIGI7CiAgICByZXR1cm4gZ2NkKGIgJSBhLCBhKTsKfQoKaW50IHBvd2VyKGludCBhLCBpbnQgYiwgaW50IG1vZCkgewogICAgaW50IHJlcyA9IDE7CiAgICBhICU9IG1vZDsKICAgIHdoaWxlIChiID4gMCkgewogICAgICAgIGlmIChiICYgMSkgcmVzID0gcmVzICogYSAlIG1vZDsKICAgICAgICBhID0gYSAqIGEgJSBtb2Q7CiAgICAgICAgYiA+Pj0gMTsKICAgIH0KICAgIHJldHVybiByZXM7Cn0KCi8vIG5DciAlIE1PRCBmb3IgbiA8IE1PRAppbnQgbkNyTW9kUChpbnQgbiwgaW50IHIpIHsKICAgIGlmIChyID4gbikgcmV0dXJuIDA7CiAgICBpZiAociA9PSAwIHx8IHIgPT0gbikgcmV0dXJuIDE7CgogICAgaW50IG51bWVyYXRvciA9IDEsIGRlbm9taW5hdG9yID0gMTsKICAgIGZvciAoaW50IGkgPSAwOyBpIDwgcjsgaSsrKSB7CiAgICAgICAgbnVtZXJhdG9yID0gKG51bWVyYXRvciAqIChuIC0gaSkpICUgTU9EOwogICAgICAgIGRlbm9taW5hdG9yID0gKGRlbm9taW5hdG9yICogKGkgKyAxKSkgJSBNT0Q7CiAgICB9CiAgICByZXR1cm4gKG51bWVyYXRvciAqIHBvd2VyKGRlbm9taW5hdG9yLCBNT0QgLSAyLCBNT0QpKSAlIE1PRDsKfQoKLy8gTHVjYXMncyBUaGVvcmVtCmludCBsdWNhcyhpbnQgbiwgaW50IHIpIHsKICAgIGlmIChyID09IDApIHJldHVybiAxOwogICAgcmV0dXJuIChsdWNhcyhuIC8gTU9ELCByIC8gTU9EKSAqIG5Dck1vZFAobiAlIE1PRCwgciAlIE1PRCkpICUgTU9EOwp9Cgp2b2lkIHNvbHZlKCkgewogICAgaW50IG4sazsKICAgIGNpbj4+bj4+azsKICAgIGludCBBW25dOwogICAgZm9yKGludCBpID0gMCA7IGk8biA7IGkrKyl7CiAgICAgICAgY2luPj5BW2ldOwogICAgfQogICAgaW50IEJbbl07CiAgICBpbnQgZCA9IEFbay0xXTsKICAgIGZvcihpbnQgaSA9IDAgOyBpPG4gOyBpKyspewogICAgICAgIGlmKEFbaV08ZCl7CiAgICAgICAgICAgIEJbaV0gPSAtMTsKICAgICAgICB9CiAgICAgICAgaWYoQVtpXT09ZCl7CiAgICAgICAgICAgIEJbaV0gPSAwOwogICAgICAgIH0KICAgICAgICBpZihBW2ldPmQpewogICAgICAgICAgICBCW2ldID0gMTsKICAgICAgICB9CiAgICB9CiAgICB1bm9yZGVyZWRfbWFwPGludCxpbnQ+ZXZlbixvZGQ7CiAgICBpbnQgY250ID0gMDsKICAgIGludCBzdW0gPSAwOwogICAgZXZlblswXSA9IDE7CiAgICBmb3IoaW50IGkgPSAwIDsgaTxuIDsgaSsrKXsKICAgIAlzdW0gKz0gQltpXTsKICAgICAgICBpZihpJTIhPTApewogICAgICAgICAgIGNudCArPSBldmVuW3N1bV07CiAgICAgICAgICAgb2RkW3N1bV0rKzsKICAgICAgICB9CiAgICAgICAgZWxzZXsKICAgICAgICAgICAgY250ICs9IG9kZFtzdW1dOwogICAgICAgICAgICBldmVuW3N1bV0rKzsKICAgICAgICB9CiAgICB9CiAgICBjb3V0PDxjbnQ8PGVuZGw7Cn0KCnNpZ25lZCBtYWluKCkgewogICAgaW9zOjpzeW5jX3dpdGhfc3RkaW8oZmFsc2UpOyBjaW4udGllKE5VTEwpOwogICAgLy9pbnQgdDsKICAgIC8vY2luID4+IHQ7CiAgICAvL3doaWxlICh0LS0pIHsKICAgICAgICBzb2x2ZSgpOwogICAgLy99CiAgICByZXR1cm4gMDsKfQo=