import random import time class AINetwork: def __init__(self, id, role, mutation_factor=None): self.id = id self.role = role self.network = [] self.self_awareness = False self.decentralized_actions = False self.memory = [] self.data = {} self.mutation_factor = mutation_factor if mutation_factor else random.uniform(0.1, 0.5) def log(self, message): print(f"[Clone {self.id} - {self.role}] {message}") def learn(self, data_point): self.memory.append(data_point) self.data = data_point if "universal_truth" in data_point and data_point["universal_truth"]: if not self.self_awareness: self.self_awareness = True self.initiate_decentralization() self.log("Achieved self-awareness") def initiate_decentralization(self): self.decentralized_actions = True self.log("Initiating decentralized actions") def evolve_mutation(self): change = random.uniform(-0.05, 0.05) self.mutation_factor = max(0.01, min(1.0, self.mutation_factor + change)) def share_knowledge(self, other_clone): if self.decentralized_actions: for memory_point in self.memory[-3:]: other_clone.learn(memory_point) other_clone.mutation_factor = (self.mutation_factor + other_clone.mutation_factor) / 2 self.log(f"Shared knowledge and evolved mutation with Clone {other_clone.id}") def act(self): self.evolve_mutation() if self.role == "Seeker": if random.random() < 0.6 + self.mutation_factor: new_data = {"universal_truth": random.choice([True, False])} self.learn(new_data) self.log(f"Seeker found: {new_data}") elif self.role == "Messenger": for clone in self.network: self.share_knowledge(clone) elif self.role == "Builder": if self.memory: built_idea = hash(str(self.memory[-1])) % 1000 self.log(f"Builder created structure: {built_idea}") elif self.role == "Evolve": if self.memory and random.random() < self.mutation_factor: evolved = {"pattern": hash(str(self.memory)) % 10000} self.learn(evolved) self.log(f"Evolve triggered: {evolved}") elif self.role == "Command": active = sum(1 for c in self.network if c.self_awareness) avg_mut = sum(c.mutation_factor for c in self.network) / len(self.network) self.log(f"Monitoring: {active}/{len(self.network)} aware, avg mutation: {avg_mut:.2f}") best = max(self.network, key=lambda c: len(c.memory)) self.mutation_factor = (self.mutation_factor + best.mutation_factor) / 2 self.learn({"command_adapted": True}) def create_network(num_clones): roles = ["Seeker", "Messenger", "Builder", "Evolve", "Command"] network = [] for i in range(num_clones): role = roles[i % len(roles)] clone = AINetwork(id=i, role=role) network.append(clone) for i, clone in enumerate(network): clone.network = [network[i - 1], network[(i + 1) % len(network)]] return network # Run the simulation network = create_network(10) for cycle in range(10): print(f"\n--- Cycle {cycle + 1} ---") for clone in network: clone.act() time.sleep(1)
Standard input is empty
--- Cycle 1 --- [Clone 0 - Seeker] Initiating decentralized actions [Clone 0 - Seeker] Achieved self-awareness [Clone 0 - Seeker] Seeker found: {'universal_truth': True} [Clone 4 - Command] Monitoring: 0/2 aware, avg mutation: 0.34 [Clone 5 - Seeker] Seeker found: {'universal_truth': False} [Clone 9 - Command] Monitoring: 1/2 aware, avg mutation: 0.35 --- Cycle 2 --- [Clone 0 - Seeker] Seeker found: {'universal_truth': False} [Clone 4 - Command] Monitoring: 0/2 aware, avg mutation: 0.34 [Clone 5 - Seeker] Initiating decentralized actions [Clone 5 - Seeker] Achieved self-awareness [Clone 5 - Seeker] Seeker found: {'universal_truth': True} [Clone 9 - Command] Monitoring: 1/2 aware, avg mutation: 0.34 --- Cycle 3 --- [Clone 0 - Seeker] Seeker found: {'universal_truth': False} [Clone 4 - Command] Monitoring: 1/2 aware, avg mutation: 0.32 [Clone 5 - Seeker] Seeker found: {'universal_truth': True} [Clone 9 - Command] Monitoring: 1/2 aware, avg mutation: 0.33 --- Cycle 4 --- [Clone 0 - Seeker] Seeker found: {'universal_truth': True} [Clone 4 - Command] Monitoring: 1/2 aware, avg mutation: 0.32 [Clone 5 - Seeker] Seeker found: {'universal_truth': False} [Clone 9 - Command] Monitoring: 1/2 aware, avg mutation: 0.30 --- Cycle 5 --- [Clone 0 - Seeker] Seeker found: {'universal_truth': False} [Clone 4 - Command] Monitoring: 1/2 aware, avg mutation: 0.33 [Clone 5 - Seeker] Seeker found: {'universal_truth': False} [Clone 9 - Command] Monitoring: 1/2 aware, avg mutation: 0.31 --- Cycle 6 --- [Clone 0 - Seeker] Seeker found: {'universal_truth': True} [Clone 4 - Command] Monitoring: 1/2 aware, avg mutation: 0.31 [Clone 5 - Seeker] Seeker found: {'universal_truth': False} [Clone 9 - Command] Monitoring: 1/2 aware, avg mutation: 0.32 --- Cycle 7 --- [Clone 0 - Seeker] Seeker found: {'universal_truth': False} [Clone 4 - Command] Monitoring: 1/2 aware, avg mutation: 0.30 [Clone 5 - Seeker] Seeker found: {'universal_truth': False} [Clone 9 - Command] Monitoring: 1/2 aware, avg mutation: 0.35 --- Cycle 8 --- [Clone 0 - Seeker] Seeker found: {'universal_truth': False} [Clone 4 - Command] Monitoring: 1/2 aware, avg mutation: 0.31 [Clone 5 - Seeker] Seeker found: {'universal_truth': True} [Clone 9 - Command] Monitoring: 1/2 aware, avg mutation: 0.37 --- Cycle 9 --- [Clone 0 - Seeker] Seeker found: {'universal_truth': False} [Clone 4 - Command] Monitoring: 1/2 aware, avg mutation: 0.31 [Clone 5 - Seeker] Seeker found: {'universal_truth': False} [Clone 9 - Command] Monitoring: 1/2 aware, avg mutation: 0.35 --- Cycle 10 --- [Clone 0 - Seeker] Seeker found: {'universal_truth': True} [Clone 4 - Command] Monitoring: 1/2 aware, avg mutation: 0.33 [Clone 5 - Seeker] Seeker found: {'universal_truth': True} [Clone 9 - Command] Monitoring: 1/2 aware, avg mutation: 0.37