#include<bits/stdc++.h>
using namespace std;
#define endl '\n'
#define int long long
const int MOD = 1000000007;
const int MOD2 = 998244353;
const int INF = LLONG_MAX / 2;
const int MAXN = 100000;
int primes[1000000];
void seive() {
fill(primes, primes + 1000000, 1);
primes[0] = primes[1] = 0;
for (int i = 2; i * i < 1000000; i++) {
if (primes[i]) {
for (int j = i * i; j < 1000000; j += i) {
primes[j] = 0;
}
}
}
}
bool isPrime(int n) {
if (n <= 1) return false;
for (int i = 2; i * i <= n; i++) {
if (n % i == 0) return false;
}
return true;
}
int gcd(int a, int b) {
if (a == 0) return b;
return gcd(b % a, a);
}
int power(int a, int b, int mod) {
int res = 1;
a %= mod;
while (b > 0) {
if (b & 1) res = res * a % mod;
a = a * a % mod;
b >>= 1;
}
return res;
}
// nCr % MOD for n < MOD
int nCrModP(int n, int r) {
if (r > n) return 0;
if (r == 0 || r == n) return 1;
int numerator = 1, denominator = 1;
for (int i = 0; i < r; i++) {
numerator = (numerator * (n - i)) % MOD;
denominator = (denominator * (i + 1)) % MOD;
}
return (numerator * power(denominator, MOD - 2, MOD)) % MOD;
}
// Lucas's Theorem
int lucas(int n, int r) {
if (r == 0) return 1;
return (lucas(n / MOD, r / MOD) * nCrModP(n % MOD, r % MOD)) % MOD;
}
void solve() {
int n;
cin>>n;
int A[n];
int totalSum = 0;
for(int i = 0 ; i<n ; i++){
cin>>A[i];
totalSum += A[i];
}
if(totalSum%4==0){
unordered_map<int,int>m,m1;
int suffix[n];
int suffix_sum = A[n-1];
m1[suffix_sum]++;
for(int i = n-2 ; i>=1 ; i--){
suffix_sum += A[i];
suffix[i] = m1[(suffix_sum)/2];
m1[suffix_sum]++;
}
int prefix_sum = A[0];
int y = (totalSum/4);
int cnt = 0;
for(int i = 1 ; i<n-2 ; i++){
prefix_sum += A[i];
int remaining = totalSum - prefix_sum;
if(prefix_sum == (2*y) && remaining==(2*y)){
cnt += (m[(prefix_sum)/2]*(suffix[i+1]));
}
m[prefix_sum]++;
}
cout<<cnt<<endl;
}
else{
cout<<0<<endl;
}
}
signed main() {
ios::sync_with_stdio(false); cin.tie(NULL);
//int t;
//cin >> t;
//while (t--) {
solve();
//}
return 0;
}
I2luY2x1ZGU8Yml0cy9zdGRjKysuaD4KdXNpbmcgbmFtZXNwYWNlIHN0ZDsKI2RlZmluZSBlbmRsICdcbicKI2RlZmluZSBpbnQgbG9uZyBsb25nCmNvbnN0IGludCBNT0QgPSAxMDAwMDAwMDA3Owpjb25zdCBpbnQgTU9EMiA9IDk5ODI0NDM1MzsKY29uc3QgaW50IElORiA9IExMT05HX01BWCAvIDI7CmNvbnN0IGludCBNQVhOID0gMTAwMDAwOwppbnQgcHJpbWVzWzEwMDAwMDBdOwoKdm9pZCBzZWl2ZSgpIHsKICAgIGZpbGwocHJpbWVzLCBwcmltZXMgKyAxMDAwMDAwLCAxKTsKICAgIHByaW1lc1swXSA9IHByaW1lc1sxXSA9IDA7CiAgICBmb3IgKGludCBpID0gMjsgaSAqIGkgPCAxMDAwMDAwOyBpKyspIHsKICAgICAgICBpZiAocHJpbWVzW2ldKSB7CiAgICAgICAgICAgIGZvciAoaW50IGogPSBpICogaTsgaiA8IDEwMDAwMDA7IGogKz0gaSkgewogICAgICAgICAgICAgICAgcHJpbWVzW2pdID0gMDsKICAgICAgICAgICAgfQogICAgICAgIH0KICAgIH0KfQoKYm9vbCBpc1ByaW1lKGludCBuKSB7CiAgICBpZiAobiA8PSAxKSByZXR1cm4gZmFsc2U7CiAgICBmb3IgKGludCBpID0gMjsgaSAqIGkgPD0gbjsgaSsrKSB7CiAgICAgICAgaWYgKG4gJSBpID09IDApIHJldHVybiBmYWxzZTsKICAgIH0KICAgIHJldHVybiB0cnVlOwp9CgppbnQgZ2NkKGludCBhLCBpbnQgYikgewogICAgaWYgKGEgPT0gMCkgcmV0dXJuIGI7CiAgICByZXR1cm4gZ2NkKGIgJSBhLCBhKTsKfQoKaW50IHBvd2VyKGludCBhLCBpbnQgYiwgaW50IG1vZCkgewogICAgaW50IHJlcyA9IDE7CiAgICBhICU9IG1vZDsKICAgIHdoaWxlIChiID4gMCkgewogICAgICAgIGlmIChiICYgMSkgcmVzID0gcmVzICogYSAlIG1vZDsKICAgICAgICBhID0gYSAqIGEgJSBtb2Q7CiAgICAgICAgYiA+Pj0gMTsKICAgIH0KICAgIHJldHVybiByZXM7Cn0KCi8vIG5DciAlIE1PRCBmb3IgbiA8IE1PRAppbnQgbkNyTW9kUChpbnQgbiwgaW50IHIpIHsKICAgIGlmIChyID4gbikgcmV0dXJuIDA7CiAgICBpZiAociA9PSAwIHx8IHIgPT0gbikgcmV0dXJuIDE7CgogICAgaW50IG51bWVyYXRvciA9IDEsIGRlbm9taW5hdG9yID0gMTsKICAgIGZvciAoaW50IGkgPSAwOyBpIDwgcjsgaSsrKSB7CiAgICAgICAgbnVtZXJhdG9yID0gKG51bWVyYXRvciAqIChuIC0gaSkpICUgTU9EOwogICAgICAgIGRlbm9taW5hdG9yID0gKGRlbm9taW5hdG9yICogKGkgKyAxKSkgJSBNT0Q7CiAgICB9CiAgICByZXR1cm4gKG51bWVyYXRvciAqIHBvd2VyKGRlbm9taW5hdG9yLCBNT0QgLSAyLCBNT0QpKSAlIE1PRDsKfQoKLy8gTHVjYXMncyBUaGVvcmVtCmludCBsdWNhcyhpbnQgbiwgaW50IHIpIHsKICAgIGlmIChyID09IDApIHJldHVybiAxOwogICAgcmV0dXJuIChsdWNhcyhuIC8gTU9ELCByIC8gTU9EKSAqIG5Dck1vZFAobiAlIE1PRCwgciAlIE1PRCkpICUgTU9EOwp9Cgp2b2lkIHNvbHZlKCkgewogICAgaW50IG47CiAgICBjaW4+Pm47CiAgICBpbnQgQVtuXTsKICAgIGludCB0b3RhbFN1bSA9IDA7CiAgICBmb3IoaW50IGkgPSAwIDsgaTxuIDsgaSsrKXsKICAgICAgICBjaW4+PkFbaV07CiAgICAgICAgdG90YWxTdW0gKz0gQVtpXTsKICAgIH0KICAgIGlmKHRvdGFsU3VtJTQ9PTApewogICAgICAgIHVub3JkZXJlZF9tYXA8aW50LGludD5tLG0xOwogICAgICAgIGludCBzdWZmaXhbbl07CiAgICAgICAgaW50IHN1ZmZpeF9zdW0gPSBBW24tMV07CiAgICAgICAgbTFbc3VmZml4X3N1bV0rKzsKICAgICAgICBmb3IoaW50IGkgPSBuLTIgOyBpPj0xIDsgaS0tKXsKICAgICAgICAgICAgc3VmZml4X3N1bSArPSBBW2ldOwogICAgICAgICAgICBzdWZmaXhbaV0gPSBtMVsoc3VmZml4X3N1bSkvMl07CiAgICAgICAgICAgIG0xW3N1ZmZpeF9zdW1dKys7CiAgICAgICAgfQogICAgICAgIGludCBwcmVmaXhfc3VtID0gQVswXTsKICAgICAgICBpbnQgeSA9ICh0b3RhbFN1bS80KTsKICAgICAgICBpbnQgY250ID0gMDsKICAgICAgICBmb3IoaW50IGkgPSAxIDsgaTxuLTIgOyBpKyspewogICAgICAgICAgICBwcmVmaXhfc3VtICs9IEFbaV07CiAgICAgICAgICAgIGludCByZW1haW5pbmcgPSB0b3RhbFN1bSAtIHByZWZpeF9zdW07CiAgICAgICAgICAgIGlmKHByZWZpeF9zdW0gPT0gKDIqeSkgJiYgcmVtYWluaW5nPT0oMip5KSl7CiAgICAgICAgICAgICAgIGNudCArPSAobVsocHJlZml4X3N1bSkvMl0qKHN1ZmZpeFtpKzFdKSk7CiAgICAgICAgICAgIH0KICAgICAgICAgICAgbVtwcmVmaXhfc3VtXSsrOwogICAgICAgIH0KICAgICAgICBjb3V0PDxjbnQ8PGVuZGw7CiAgICB9CiAgICBlbHNlewogICAgICAgIGNvdXQ8PDA8PGVuZGw7CiAgICB9Cn0KCnNpZ25lZCBtYWluKCkgewogICAgaW9zOjpzeW5jX3dpdGhfc3RkaW8oZmFsc2UpOyBjaW4udGllKE5VTEwpOwogICAgLy9pbnQgdDsKICAgIC8vY2luID4+IHQ7CiAgICAvL3doaWxlICh0LS0pIHsKICAgICAgICBzb2x2ZSgpOwogICAgLy99CiAgICByZXR1cm4gMDsKfQo=